This article was downloaded by:

On: 28 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

ONE-POT SYNTHESIS OF STERICALLY CONGESTED PHOSPHORUS YLIDES

Issa Yavaria; Mohammad Reza Islamia

^a Chemistry Department, Tarbiat Modarres University, Tehran, Iran

To cite this Article Yavari, Issa and Islami, Mohammad Reza(1997) 'ONE-POT SYNTHESIS OF STERICALLY CONGESTED PHOSPHORUS YLIDES', Phosphorus, Sulfur, and Silicon and the Related Elements, 130: 1, 229 — 233

To link to this Article: DOI: 10.1080/10426509708033713

URL: http://dx.doi.org/10.1080/10426509708033713

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

ONE-POT SYNTHESIS OF STERICALLY CONGESTED PHOSPHORUS YLIDES

ISSA YAVARI* and MOHAMMAD REZA ISLAMI

Chemistry Department, Tarbiat Modarres University, P. O. Box 14155-4838, Tehran, Iran

Protonation of the reactive 1:1 intermediates produced in the reaction between triphenylphosphine and dialkyl acetylenedicarboxylates by 1,3-diphenylpropane-1,3-dione leads to vinylphosphonium salts, which undergo Michael addition with the conjugate base of the CH-acid to produce highly functionalized salt-free phosphorus ylides in excellent yields.

Keywords: Stabilized ylides; triphenylphosphine; acetylenic esters; CH-acids

Phosphorus ylides are reactive systems, which take part in many reactions of value in the synthesis of organic products. [1-10] Several methods have been developed for preparation of phosphorus ylides. These ylides are usually prepared by treatment of a phosphonium salt with a base, and phosphonium salts are usually prepared from the phosphine and an alkyl halide. [2-3] Phosphonium salts are also prepared by Michael addition of phosphorus to activated olefines and in other ways. [1] The phosphonium salts are most often converted to the ylide by treatment with a strong base, though weaker bases can be used if the salt is acidic enough. We wish to report an efficient synthetic route to sterically congested phosphorus ylides 3 using triphenylphosphine, dialkyl acetylenedicarboxylates (1) and a carbon acid, such as 1,3-diphenylpropane-1,3-dione, in excellent yields.

On the basis of the well established chemistry of trivalent phosphorous nucleophiles^[1-5] it is reasonable to assume that phosphorous ylide 3 results from the initial addition of triphenylphosphine to the acetylenic ester and a concomitant protonation of the 1:1 adduct by 1,3-diphenylpropane-1,3-dione. Then the positively charged ion is attacked by the enolate anion of the diketone to form phosphorane 3.

^{*}To whom correspondence should be addressed.

$$(Ph)_3P + RO_2C-C \equiv C-CO_2R + Ph$$

Ph

CH₂CI₂

room temp.

The structures of compounds **3a-c** were deduced from their elemental analyses and their ¹H and ¹³C NMR and IR spectral data. The nature of these compounds as 1:1:1 adducts was apparent from the mass spectra which displayed molecular ion peaks at m/z = 628, 656, and 712. Initial fragmentations involve loss of the chains [(Ph)₃P, ROH, CO₂R, PhCOCHCOPh, PhCO, C₆H₅].

The ¹H NMR spectrum of **3a** exhibited two sharp lines ($\delta = 3.02$ and 3.58 ppm) arising from methoxy protons along with signals for vicinal methine protons at $\delta = 3.87$ and 7.15 ppm, which appear as double doublet (${}^3J_{\rm HP} = 18.0$ Hz and ${}^3J_{\rm HH} = 10.4$ Hz) and doublet (${}^3J_{\rm HH} = 10.4$ Hz), respectively. The aromatic protons appear as a multiplet at $\delta = 7.2$ –8.25 ppm. The phenyl groups of the propane-1,3-dione moiety, are diastereotopic and exhibite two clear double doublets for the protons in the *ortho*-position relative to the carbonyl group (see Table I). The ¹³C NMR spectrum of **3a** displayed twenty one distinct resonances in agreement with the phosphorane structure. Although the presence of the ³¹P nucleus complicates both the ¹H and ¹³C NMR spectra of **3a**, it helps in assignment of the signals by long-range couplings with ¹H and ¹³C nuclei (see Table I). The ¹H and ¹³C NMR spectra of **3b** and **3c** are similar to those of **3a**, except for the ester groups, which exhibited characteristic resonances with appropriate chemical shifts (see Table I).

The structural assignments made on the basis of the ¹H and ¹³C NMR spectra of compounds **3a-c** were supported by measurement of their IR spectra. The carbonyl region of the spectrum exhibited four distinct absorption bands for each compound (see Experimental section). Of special interest is the ester absorption

n-13 NMR data for

	TABLE I Proton a	and carbon-13 NMR data for compounds 3a-c
Compound	¹ H/ ¹³ C	$\delta(ppm) \ (CDCl_3\text{-}Me_4Si)$
3a	13C	3.02 and 3.58 (6H, 2s, 2 OMe), 3.87 (1H, dd, ${}^{3}J_{HH}$ 10.4 Hz and ${}^{3}J_{PH}$ 18.0 Hz, P = C-CH), 7.15 (1H, d, ${}^{3}J_{HH}$ 10.4 Hz, P = C-CH), 7.2–7.7 (6H, m, PhCO ^a), 7.95 (2H, dd, ${}^{3}J_{HH}$ 8.2 Hz and ${}^{4}J_{HH}$ 1.6 Hz, PhCO ^b), 8.25 (2H, dd, ${}^{3}J_{HH}$ 8.2 Hz and ${}^{4}J_{HH}$ 1.6 Hz, PhCO ^b) 39.66 (d, ${}^{1}J_{PC}$ 125.2 Hz, P = C), 45.92 (d, ${}^{2}J_{PC}$ 13.8 Hz,
	C	P=C- ¹³ C), 48.62 and 51.43 (2 OMe), 55.19 (d, ${}^{3}J_{PC}$ 4.6 Hz, P=C- ¹³ C), 48.62 and 51.43 (2 OMe), 55.19 (d, ${}^{3}J_{PC}$ 4.6 Hz, P=C-C- ¹³ C), 127.98, 128.40, 128.56 and 129.33 (PhCO°), 132.65 and 133.50 (PhCO°), 137.11 and 137.47 (PhCO°), 128.26 (d, ${}^{3}J_{PC}$ 12.9 Hz, meta-C ¹), 129.98 (d, ${}^{1}J_{PC}$ 85.0 Hz, ipso-C ¹), 131.70 (d, ${}^{4}J_{PC}$ 2.2 Hz, para-C ¹), 133.68 (d, ${}^{2}J_{PC}$ 9.2 Hz, ortho-C ¹), 169.71 (d, ${}^{2}J_{PC}$ 13.8 Hz, ester C=O), 174.97 d, ${}^{3}J_{PC}$ 3.7 Hz, ester C=O), 194.03 and 195.34 (2C=O)
3b	'Н	0.42 (3H, t, ${}^{3}J_{HH}$ 7.3 Hz, CH ₃), 1.07 (3H, t, ${}^{3}J_{HH}$ 7.3 Hz, CH ₃), 3.69 (1H, dd, ${}^{3}J_{HH}$ 10.7 Hz and ${}^{3}J_{PH}$ 18.0 Hz, P=C-CH), 3.71 (2H, q, ${}^{3}J_{HH}$ 7.3 Hz, CH ₂), 4.08 (2H, q, ${}^{3}J_{HH}$ 7.3 Hz, CH ₂), 7.17 (1H, d, ${}^{3}J_{HH}$ 10.7 Hz, P=C-C-CH), 7.2–7.8 (6H, m, PhCO³), 7.97 (2H, dd, ${}^{3}J_{HH}$ 8.2 Hz and ${}^{4}J_{HH}$ 1.6 Hz, PhCO³), 8.3 (2H, dd, ${}^{3}J_{HH}$ 8.2 Hz and
	¹³ C	4 J _{HH} 1.6 Hz, PhCO ^b) 13.59 and 14.05 (2CH ₃), 39.95 (d, 1 J _{PC} 125.2 Hz, P=C), 46.40 (d, 2 J _{PC} 13.8 Hz, P=C- 13 CH), 55.22 (d, 3 J _{PC} 4.5 Hz, P=C- 13 C), 57.25 and 60.59 (2 OCH ₂), 128.27, 128.52, 128.72 and 129.61 (PhCO ^c), 132.46 and 133.28 (PhCO ^c), 137.39 and 137.88 (PhCO ^c), 128.22 (d, 3 J _{PC} 12.8 Hz, meta-C ^f), 129.67 (d, 4 J _{PC} 85.6 Hz, ipso-C ^f), 131.73 (d, 4 J _{PC} 2.6 Hz, para-C ^f), 133.98 (d, 2 J _{PC} 10.1 Hz, meta-C ^f) 169.61 (d, 2 J _{PC} 13.8 Hz, ester C=O), 175.30 (d, 3 J _{PC} 4.7 Hz, ester C=O), 194.20 and 195.58 (2C=O)
3c	'Н	0.86 and 1.38 (18 H, 2s, 2 CMe ₃), 3.68 (1H, dd, ${}^{3}J_{HH}$ 10.8 Hz and ${}^{3}J_{PH}$ 18.0 Hz, P=C-CH), 7.16 (1H, d, ${}^{3}J_{HH}$ 10.8 Hz, P=C-C-CH), 7.2–7.6 (6H, m, PhCO ^a), 7.96 (2H, dd, ${}^{3}J_{HH}$ 8.2 Hz and ${}^{4}J_{HH}$ 1.6 Hz, PhCO ^b), 8.32 (2H, dd, ${}^{3}J_{HH}$ 8.2 Hz and ${}^{4}J_{HH}$ 1.6 Hz, PhCO ^b)
	¹³ C	28.22 and 28.34 (13 CH $_3$ of 2 CMe $_3$), 39.50 (d, 1 J $_{PC}$ 125.2 Hz, P=C), 46.95 (d, 2 J $_{PC}$ 14.7 Hz, P=C- 13 C), 55.54 (d, 3 J $_{PC}$ 3.7 Hz, P=C- $^{C-13}$ C), 76.76 and 80.10 (2 13 CMe $_3$), 128.19, 128.64, 128.80 and 129.86 (PhCO°), 132.30 and 133.03 (PhCO°), 137.39 and 138.04 (PhCO°), 128.04 (d, 3 J $_{PC}$ 2.0 Hz, meta-C°), 129.67 (d, 4 J $_{PC}$ 85.6 Hz, ipso-C°), 131.57 (d, 4 J $_{PC}$ 2.8 Hz, para-C°), 134.38 (d, 2 J $_{PC}$ 10.1 Hz, ortho-C°), 169.32 (d, 2 J $_{PC}$ 12.9 Hz, ester C=O), 174.02 (d, 3 J $_{PC}$ 4.6 Hz, ester C=O), 194.16 and 196.27 (2C=O)

^aAromatic protons in the *meta*- and *para*-position relative to the carbonyl group. ^bAromatic protons in the *ortho*-position relative to the carbonyl group.

^{*}Ortho- and meta-C of diastereotopic PhCO groups.

dPara-C of PhCO.

^eIpso-C of PhCO. ^fCarbon atoms of the (Ph)₃ group.

at 1727–1687 cm⁻¹ for these compounds. Conjugation with the carbon-carbon double bond appears to be a plausible factor in the reduction of these absorption frequencies.^[11]

Functionalized phosphorus ylides **3a-c** may be considered as potentially useful synthetic intermediates.^[1-3] The procedure described here may be an acceptable method for the preparation of phosphoranes with variable functionalities.

EXPERIMENTAL

Melting points were measured on an Electrothermal 9100 apparatus and are uncorrected. Elemental analyses for C, H, and N were performed using a Heracus CHN-O-Rapid analyzer. IR spectra were measured on a Shimadzu IR-460 spectrometer. ¹H and ¹³C NMR spectra were measured with JEOL EX-90A spectrometer at 90 and 22.6 MHz, respectively. Mass spectra were recorded on a Finnigan-Matt 8430 mass spectrometer operating at an ionization potential of 70 eV. 1,3-Diphenylpropane-1,3-dione and dialkyl acetylenedicarboxylates were obtained from Fluka (Buchs, Switzerland) and were used without further purification.

Preparation of dimethyl 2-(1,3-diphenylpropane-1,3-dione-2-yl)-3-(triphenylphosphoranylidene)-butanedioate 3a. General procedure

To a magnetically stirred solution of triphenylphosphine (0.26 g, 1 mmol) and 1,3-diphenylpropane-1,3-dione (0.22 g, 1 mmol) in CH_2Cl_2 (5 ml) was added, dropwise, a mixture of dimethyl acetylenedicarboxylate (0.12 ml, 1 mmol) in CH_2Cl_2 (2 ml) at $-10^{\circ}C$ over 5 min. After 24 hr stirring at room temperature, the product was filtered and recrystallized from ethanol. (0.59 g, m.p. 205°C, yield 95%); IR (KBr) (ν_{max} , cm⁻¹): 1727 and 1689 (C=O, ester), 1660 and 1624 (C=O, ketone). MS (m/z, %): 628 (M⁺, 7): 335 (M⁺-2 PhCO-CO₂Me-C₂H₂, 100); 105 (M⁺ of PhCO, 75); 262 (M⁺ of (Ph)₃P 58). Analysis: Calc. for $C_{39}H_{33}O_6P$ (628.66): C, 74.51, H, 5.29; found: C, 74.6, H, 5.3.

Selected data for diethyl 2-(1,3-diphenylpropane-1,3-dione-2-yl)-3-(triphenylphosphoranylidene)-butanedioate **3b**: 0.62 g, m.p 206°C, yield 95%, IR (KBr) (ν_{max} , cm⁻¹): 1726 and 1687 (C = O, ester), 1652 and 1624 (C = O, ketone). MS (m/z, %): 657 (MH⁺, 24); 584 (M⁺-CO₂Et, 27); 433 [M⁺-CH₂(COPh)₂, 78], 275 (433-CO₂Et, 42), 262 [(Ph)₃P, 100), 105 (PhCO, 75). Analysis: Calc. for C₄₁H₃₇O₆P (656.74): C, 74.98, H, 5.68; found: C, 74.8, H, 5.8.

Selected data for di-tert-butyl 2-(1,3-diphenylpropane-1,3-dione-2-yl)-3-(tri-phenylphosphoranylidene)-butanedioate 3c: 0.69 g, m.p 208°C, yield 98%, IR

(KBr) (ν_{max} , cm⁻¹): 1715 and 1693 (C=O, ester), 1615 and 1593 (C=O, ketone). MS (m/z, %): 712 (M⁺, 5); 611 (M⁺-CO₂CMe₃, 45); 183 [M⁺-(Ph)₃P-2CO₂CMe₃-CO-C₃H₁, 90]. Analysis: Calc. for C₄₅H₄₅O₆P (712.82): C, 75.82, H, 6.36; found: C, 73.5, H, 6.1.

References

- [1] H. R. Hudson, in "The Chemistry of Organophosphorus Compounds, Volume 1. Primary, Secondary and Tertiary Phopsphines, Polyphosphines and Heterocyclic Organophosphorus(III) Compounds," (Ed.: F. R. Hantley), Wiley, New York, 1990, pp. 386-472.
- [2] R. Engel, "Synthesis of Carbon-Phosphorus Bonds," CRC Press, Boca Raton, FL, 1988.
- [3] J. I. G. Cadogan, "Organophosphorus Reagents in Organic Synthesis," Academic Press, New York, 1979.
- [4] B. E. Maryano and A. B. Reitz, Chem. Rev., 89, 863 (1989).
- [5] R. A. Cherkasov and M. A. Pudovik, Russ. Chem. Rev., 63, 1019 (1994).
- [6] I. Yavari and R. Baharfar, J. Chem. Res. (S), 146 (1997); Tetrahedron Lett., 4259 (1997).
- [7] K. M. Pietrusiewiz and M. Zablocka, Chem. Rev., 94, 1375 (1994).
- [8] H. J. Bestmann and O. Vostrowsky, Topics Curr. Chem., 109, 86 (1983).
- [9] H. H. Wasserman, C. M. Baldino, and S. J. Coats, J. Org. Chem., 60, 8231 (1995).
- [10] R. A. Aitken, H. Herion, A. Janosi, N. Karodia, S. V. Raut, S. Seth, I. J. Shannon, and F. C. Smith, J. Chem. Soc., Perkin. Trans. 1, 2467 (1994).
- [11] W. A. Kleschick and C. H. Heathcock, J. Org. Chem., 43, 1256 (1978).